DBMS - Normalization

Functional Dependency

Functional dependency (FD) is a set of constraints between two attributes in a relation. Functional dependency says that if two tuples have same values for attributes A1, A2,..., An, then those two tuples must have to have same values for attributes B1, B2, ..., Bn.

Functional dependency is represented by an arrow sign (→) that is, X→Y, where X functionally determines Y. The left-hand side attributes determine the values of attributes on the right-hand side.

Armstrong's Axioms

If F is a set of functional dependencies then the closure of F, denoted as F+, is the set of all functional dependencies logically implied by F. Armstrong's Axioms are a set of rules, that when applied repeatedly, generates a closure of functional dependencies.

· Reflexive rule − If alpha is a set of attributes and beta is_subset_of alpha, then alpha holds beta.

· Augmentation rule − If a → b holds and y is attribute set, then ay → by also holds. That is adding attributes in dependencies, does not change the basic dependencies.

· Transitivity rule − Same as transitive rule in algebra, if a → b holds and b → c holds, then a → c also holds. a → b is called as a functionally that determines b.

Trivial Functional Dependency

· Trivial − If a functional dependency (FD) X → Y holds, where Y is a subset of X, then it is called a trivial FD. Trivial FDs always hold.

· Non-trivial − If an FD X → Y holds, where Y is not a subset of X, then it is called a non-trivial FD.

· Completely non-trivial − If an FD X → Y holds, where x intersect Y = Φ, it is said to be a completely non-trivial FD.

Normalization

If a database design is not perfect, it may contain anomalies, which are like a bad dream for any database administrator. Managing a database with anomalies is next to impossible.

· Update anomalies − If data items are scattered and are not linked to each other properly, then it could lead to strange situations. For example, when we try to update one data item having its copies scattered over several places, a few instances get updated properly while a few others are left with old values. Such instances leave the database in an inconsistent state.

· Deletion anomalies − We tried to delete a record, but parts of it was left undeleted because of unawareness, the data is also saved somewhere else.

· Insert anomalies − We tried to insert data in a record that does not exist at all.

Normalization is a method to remove all these anomalies and bring the database to a consistent state.

First Normal Form

First Normal Form is defined in the definition of relations (tables) itself. This rule defines that all the attributes in a relation must have atomic domains. The values in an atomic domain are indivisible units.

[image: image1.png]
We re-arrange the relation (table) as below, to convert it to First Normal Form.

[image: image2.png]
Each attribute must contain only a single value from its pre-defined domain.

Second Normal Form

Before we learn about the second normal form, we need to understand the following −

· Prime attribute − An attribute, which is a part of the prime-key, is known as a prime attribute.

· Non-prime attribute − An attribute, which is not a part of the prime-key, is said to be a non-prime attribute.

If we follow second normal form, then every non-prime attribute should be fully functionally dependent on prime key attribute. That is, if X → A holds, then there should not be any proper subset Y of X, for which Y → A also holds true.

[image: image3.png]
We see here in Student_Project relation that the prime key attributes are Stu_ID and Proj_ID. According to the rule, non-key attributes, i.e. Stu_Name and Proj_Name must be dependent upon both and not on any of the prime key attribute individually. But we find that Stu_Name can be identified by Stu_ID and Proj_Name can be identified by Proj_ID independently. This is called partial dependency, which is not allowed in Second Normal Form.

[image: image4.png]
We broke the relation in two as depicted in the above picture. So there exists no partial dependency.

Third Normal Form

For a relation to be in Third Normal Form, it must be in Second Normal form and the following must satisfy −

· No non-prime attribute is transitively dependent on prime key attribute.

· For any non-trivial functional dependency, X → A, then either −

· X is a superkey or,

· A is prime attribute.

[image: image5.png]
We find that in the above Student_detail relation, Stu_ID is the key and only prime key attribute. We find that City can be identified by Stu_ID as well as Zip itself. Neither Zip is a superkey nor is City a prime attribute. Additionally, Stu_ID → Zip → City, so there exists transitive dependency.

To bring this relation into third normal form, we break the relation into two relations as follows −

[image: image6.png]
Boyce-Codd Normal Form

Boyce-Codd Normal Form (BCNF) is an extension of Third Normal Form on strict terms. BCNF states that −

· For any non-trivial functional dependency, X → A, X must be a super-key.

In the above image, Stu_ID is the super-key in the relation Student_Detail and Zip is the super-key in the relation ZipCodes. So,

Stu_ID → Stu_Name, Zip

and

Zip → City

Which confirms that both the relations are in BCNF.

DBMS - Transaction

A transaction can be defined as a group of tasks. A single task is the minimum processing unit which cannot be divided further.

Let’s take an example of a simple transaction. Suppose a bank employee transfers Rs 500 from A's account to B's account. This very simple and small transaction involves several low-level tasks.

A’s Account
Open_Account(A)

Old_Balance = A.balance

New_Balance = Old_Balance - 500

A.balance = New_Balance

Close_Account(A)

B’s Account
Open_Account(B)

Old_Balance = B.balance

New_Balance = Old_Balance + 500

B.balance = New_Balance

Close_Account(B)

ACID Properties

A transaction is a very small unit of a program and it may contain several lowlevel tasks. A transaction in a database system must maintain Atomicity,Consistency, Isolation, and Durability − commonly known as ACID properties − in order to ensure accuracy, completeness, and data integrity.

· Atomicity − This property states that a transaction must be treated as an atomic unit, that is, either all of its operations are executed or none. There must be no state in a database where a transaction is left partially completed. States should be defined either before the execution of the transaction or after the execution/abortion/failure of the transaction.

· Consistency − The database must remain in a consistent state after any transaction. No transaction should have any adverse effect on the data residing in the database. If the database was in a consistent state before the execution of a transaction, it must remain consistent after the execution of the transaction as well.

· Durability − The database should be durable enough to hold all its latest updates even if the system fails or restarts. If a transaction updates a chunk of data in a database and commits, then the database will hold the modified data. If a transaction commits but the system fails before the data could be written on to the disk, then that data will be updated once the system springs back into action.

· Isolation − In a database system where more than one transaction are being executed simultaneously and in parallel, the property of isolation states that all the transactions will be carried out and executed as if it is the only transaction in the system. No transaction will affect the existence of any other transaction.

Serializability

When multiple transactions are being executed by the operating system in a multiprogramming environment, there are possibilities that instructions of one transactions are interleaved with some other transaction.

· Schedule − A chronological execution sequence of a transaction is called a schedule. A schedule can have many transactions in it, each comprising of a number of instructions/tasks.

· Serial Schedule − It is a schedule in which transactions are aligned in such a way that one transaction is executed first. When the first transaction completes its cycle, then the next transaction is executed. Transactions are ordered one after the other. This type of schedule is called a serial schedule, as transactions are executed in a serial manner.

In a multi-transaction environment, serial schedules are considered as a benchmark. The execution sequence of an instruction in a transaction cannot be changed, but two transactions can have their instructions executed in a random fashion. This execution does no harm if two transactions are mutually independent and working on different segments of data; but in case these two transactions are working on the same data, then the results may vary. This ever-varying result may bring the database to an inconsistent state.

To resolve this problem, we allow parallel execution of a transaction schedule, if its transactions are either serializable or have some equivalence relation among them.

Equivalence Schedules

An equivalence schedule can be of the following types −

Result Equivalence

If two schedules produce the same result after execution, they are said to be result equivalent. They may yield the same result for some value and different results for another set of values. That's why this equivalence is not generally considered significant.

View Equivalence

Two schedules would be view equivalence if the transactions in both the schedules perform similar actions in a similar manner.

For example −

· If T reads the initial data in S1, then it also reads the initial data in S2.

· If T reads the value written by J in S1, then it also reads the value written by J in S2.

· If T performs the final write on the data value in S1, then it also performs the final write on the data value in S2.

Conflict Equivalence

Two schedules would be conflicting if they have the following properties −

· Both belong to separate transactions.

· Both accesses the same data item.

· At least one of them is "write" operation.

Two schedules having multiple transactions with conflicting operations are said to be conflict equivalent if and only if −

· Both the schedules contain the same set of Transactions.

· The order of conflicting pairs of operation is maintained in both the schedules.

Note − View equivalent schedules are view serializable and conflict equivalent schedules are conflict serializable. All conflict serializable schedules are view serializable too.

States of Transactions

A transaction in a database can be in one of the following states −

[image: image7.png]
· Active − In this state, the transaction is being executed. This is the initial state of every transaction.

· Partially Committed − When a transaction executes its final operation, it is said to be in a partially committed state.

· Failed − A transaction is said to be in a failed state if any of the checks made by the database recovery system fails. A failed transaction can no longer proceed further.

· Aborted − If any of the checks fails and the transaction has reached a failed state, then the recovery manager rolls back all its write operations on the database to bring the database back to its original state where it was prior to the execution of the transaction. Transactions in this state are called aborted. The database recovery module can select one of the two operations after a transaction aborts −

· Re-start the transaction

· Kill the transaction

· Committed − If a transaction executes all its operations successfully, it is said to be committed. All its effects are now permanently established on the database system.

DBMS - Concurrency Control

In a multiprogramming environment where multiple transactions can be executed simultaneously, it is highly important to control the concurrency of transactions. We have concurrency control protocols to ensure atomicity, isolation, and serializability of concurrent transactions. Concurrency control protocols can be broadly divided into two categories −

· Lock based protocols

· Time stamp based protocols

Lock-based Protocols

Database systems equipped with lock-based protocols use a mechanism by which any transaction cannot read or write data until it acquires an appropriate lock on it. Locks are of two kinds −

· Binary Locks − A lock on a data item can be in two states; it is either locked or unlocked.

· Shared/exclusive − This type of locking mechanism differentiates the locks based on their uses. If a lock is acquired on a data item to perform a write operation, it is an exclusive lock. Allowing more than one transaction to write on the same data item would lead the database into an inconsistent state. Read locks are shared because no data value is being changed.

There are four types of lock protocols available −

Simplistic Lock Protocol

Simplistic lock-based protocols allow transactions to obtain a lock on every object before a 'write' operation is performed. Transactions may unlock the data item after completing the ‘write’ operation.

Pre-claiming Lock Protocol

Pre-claiming protocols evaluate their operations and create a list of data items on which they need locks. Before initiating an execution, the transaction requests the system for all the locks it needs beforehand. If all the locks are granted, the transaction executes and releases all the locks when all its operations are over. If all the locks are not granted, the transaction rolls back and waits until all the locks are granted.

[image: image8.png]
Two-Phase Locking 2PL

This locking protocol divides the execution phase of a transaction into three parts. In the first part, when the transaction starts executing, it seeks permission for the locks it requires. The second part is where the transaction acquires all the locks. As soon as the transaction releases its first lock, the third phase starts. In this phase, the transaction cannot demand any new locks; it only releases the acquired locks.

[image: image9.png]
Two-phase locking has two phases, one is growing, where all the locks are being acquired by the transaction; and the second phase is shrinking, where the locks held by the transaction are being released.

To claim an exclusive (write) lock, a transaction must first acquire a shared (read) lock and then upgrade it to an exclusive lock.

Strict Two-Phase Locking

The first phase of Strict-2PL is same as 2PL. After acquiring all the locks in the first phase, the transaction continues to execute normally. But in contrast to 2PL, Strict-2PL does not release a lock after using it. Strict-2PL holds all the locks until the commit point and releases all the locks at a time.

[image: image10.png]
Strict-2PL does not have cascading abort as 2PL does.

Timestamp-based Protocols

The most commonly used concurrency protocol is the timestamp based protocol. This protocol uses either system time or logical counter as a timestamp.

Lock-based protocols manage the order between the conflicting pairs among transactions at the time of execution, whereas timestamp-based protocols start working as soon as a transaction is created.

Every transaction has a timestamp associated with it, and the ordering is determined by the age of the transaction. A transaction created at 0002 clock time would be older than all other transactions that come after it. For example, any transaction 'y' entering the system at 0004 is two seconds younger and the priority would be given to the older one.

In addition, every data item is given the latest read and write-timestamp. This lets the system know when the last ‘read and write’ operation was performed on the data item.

Timestamp Ordering Protocol

The timestamp-ordering protocol ensures serializability among transactions in their conflicting read and write operations. This is the responsibility of the protocol system that the conflicting pair of tasks should be executed according to the timestamp values of the transactions.

· The timestamp of transaction Ti is denoted as TS(Ti).

· Read time-stamp of data-item X is denoted by R-timestamp(X).

· Write time-stamp of data-item X is denoted by W-timestamp(X).

Timestamp ordering protocol works as follows −

· If a transaction Ti issues a read(X) operation −
· If TS(Ti) < W-timestamp(X)

· Operation rejected.

· If TS(Ti) >= W-timestamp(X)

· Operation executed.

· All data-item timestamps updated.

· If a transaction Ti issues a write(X) operation −
· If TS(Ti) < R-timestamp(X)

· Operation rejected.

· If TS(Ti) < W-timestamp(X)

· Operation rejected and Ti rolled back.

· Otherwise, operation executed.

Thomas' Write Rule

This rule states if TS(Ti) < W-timestamp(X), then the operation is rejected and Ti is rolled back.

Time-stamp ordering rules can be modified to make the schedule view serializable.

Instead of making Ti rolled back, the 'write' operation itself is ignored.

DBMS - Deadlock

In a multi-process system, deadlock is an unwanted situation that arises in a shared resource environment, where a process indefinitely waits for a resource that is held by another process.

For example, assume a set of transactions {T0, T1, T2, ...,Tn}. T0 needs a resource X to complete its task. Resource X is held by T1, and T1 is waiting for a resource Y, which is held by T2. T2 is waiting for resource Z, which is held by T0. Thus, all the processes wait for each other to release resources. In this situation, none of the processes can finish their task. This situation is known as a deadlock.

Deadlocks are not healthy for a system. In case a system is stuck in a deadlock, the transactions involved in the deadlock are either rolled back or restarted.

Deadlock Prevention

To prevent any deadlock situation in the system, the DBMS aggressively inspects all the operations, where transactions are about to execute. The DBMS inspects the operations and analyzes if they can create a deadlock situation. If it finds that a deadlock situation might occur, then that transaction is never allowed to be executed.

There are deadlock prevention schemes that use timestamp ordering mechanism of transactions in order to predetermine a deadlock situation.

Wait-Die Scheme

In this scheme, if a transaction requests to lock a resource (data item), which is already held with a conflicting lock by another transaction, then one of the two possibilities may occur −

· If TS(Ti) < TS(Tj) − that is Ti, which is requesting a conflicting lock, is older than Tj − then Ti is allowed to wait until the data-item is available.

· If TS(Ti) > TS(tj) − that is Ti is younger than Tj − then Ti dies. Ti is restarted later with a random delay but with the same timestamp.

This scheme allows the older transaction to wait but kills the younger one.

Wound-Wait Scheme

In this scheme, if a transaction requests to lock a resource (data item), which is already held with conflicting lock by some another transaction, one of the two possibilities may occur −

· If TS(Ti) < TS(Tj), then Ti forces Tj to be rolled back − that is Tiwounds Tj. Tj is restarted later with a random delay but with the same timestamp.

· If TS(Ti) > TS(Tj), then Ti is forced to wait until the resource is available.

This scheme, allows the younger transaction to wait; but when an older transaction requests an item held by a younger one, the older transaction forces the younger one to abort and release the item.

In both the cases, the transaction that enters the system at a later stage is aborted.

Deadlock Avoidance

Aborting a transaction is not always a practical approach. Instead, deadlock avoidance mechanisms can be used to detect any deadlock situation in advance. Methods like "wait-for graph" are available but they are suitable for only those systems where transactions are lightweight having fewer instances of resource. In a bulky system, deadlock prevention techniques may work well.

Wait-for Graph

This is a simple method available to track if any deadlock situation may arise. For each transaction entering into the system, a node is created. When a transaction Ti requests for a lock on an item, say X, which is held by some other transaction Tj, a directed edge is created from Ti to Tj. If Tjreleases item X, the edge between them is dropped and Ti locks the data item.

The system maintains this wait-for graph for every transaction waiting for some data items held by others. The system keeps checking if there's any cycle in the graph.

[image: image11.png]
Here, we can use any of the two following approaches −

· First, do not allow any request for an item, which is already locked by another transaction. This is not always feasible and may cause starvation, where a transaction indefinitely waits for a data item and can never acquire it.

· The second option is to roll back one of the transactions. It is not always feasible to roll back the younger transaction, as it may be important than the older one. With the help of some relative algorithm, a transaction is chosen, which is to be aborted. This transaction is known as the victim and the process is known as victim selection.

Granularity

Granularity means "it's a measure of level of details of your data in a database”.
Data granularity
The granularity of data refers to the fineness with which data fields are sub-divided. For example, a postal address can be recorded, with low granularity, as a single field:

1. address = 200 2nd Ave. South #358, St. Petersburg, FL 33701-4313 USA

or with high granularity, as multiple fields:

1. street address = 200 2nd Ave. South #358

2. city = St. Petersburg

3. postal code = FL 33701-4313

4. country = USA

or even higher granularity:

1. street = 2nd Ave. South

2. address number = 200

3. suite/apartment number = #358

4. city = St. Petersburg

5. state = FL

6. postal-code = 33701

7. postal-code-add-on = 4313

8. country = USA

Multiple Granularity

· Allow data items to be of various sizes and define a hierarchy of data granularities, where the small granularities are nested within larger ones

· Can be represented graphically as a tree (but don't confuse with tree-locking protocol)

· When a transaction locks a node in the tree explicitly, it implicitly locks all the node's descendents in the same mode.

· Granularity of locking (level in tree where locking is done):

· fine granularity (lower in tree): high concurrency, high locking overhead

· coarse granularity (higher in tree): low locking overhead, low concurrency
Example of Granularity Hierarchy

[image: image12.png]
 The highest level in the example hierarchy is the entire database.

 The levels below are of type area, file and record in that order.

DBMS - Data Backup

Loss of Volatile Storage

A volatile storage like RAM stores all the active logs, disk buffers, and related data. In addition, it stores all the transactions that are being currently executed. What happens if such a volatile storage crashes abruptly? It would obviously take away all the logs and active copies of the database. It makes recovery almost impossible, as everything that is required to recover the data is lost.

Following techniques may be adopted in case of loss of volatile storage −

· We can have checkpoints at multiple stages so as to save the contents of the database periodically.

· A state of active database in the volatile memory can be periodically dumped onto a stable storage, which may also contain logs and active transactions and buffer blocks.

· <dump> can be marked on a log file, whenever the database contents are dumped from a non-volatile memory to a stable one.

Recovery

· When the system recovers from a failure, it can restore the latest dump.

· It can maintain a redo-list and an undo-list as checkpoints.

· It can recover the system by consulting undo-redo lists to restore the state of all transactions up to the last checkpoint.

Database Backup & Recovery from Catastrophic Failure

A catastrophic failure is one where a stable, secondary storage device gets corrupt. With the storage device, all the valuable data that is stored inside is lost. We have two different strategies to recover data from such a catastrophic failure −

· Remote backup &minu; Here a backup copy of the database is stored at a remote location from where it can be restored in case of a catastrophe.

· Alternatively, database backups can be taken on magnetic tapes and stored at a safer place. This backup can later be transferred onto a freshly installed database to bring it to the point of backup.

Grown-up databases are too bulky to be frequently backed up. In such cases, we have techniques where we can restore a database just by looking at its logs. So, all that we need to do here is to take a backup of all the logs at frequent intervals of time. The database can be backed up once a week, and the logs being very small can be backed up every day or as frequently as possible.

Remote Backup

Remote backup provides a sense of security in case the primary location where the database is located gets destroyed. Remote backup can be offline or real-time or online. In case it is offline, it is maintained manually.

[image: image13.png]
Online backup systems are more real-time and lifesavers for database administrators and investors. An online backup system is a mechanism where every bit of the real-time data is backed up simultaneously at two distant places. One of them is directly connected to the system and the other one is kept at a remote place as backup.

As soon as the primary database storage fails, the backup system senses the failure and switches the user system to the remote storage. Sometimes this is so instant that the users can’t even realize a failure.

DBMS - Data Recovery

Crash Recovery

DBMS is a highly complex system with hundreds of transactions being executed every second. The durability and robustness of a DBMS depends on its complex architecture and its underlying hardware and system software. If it fails or crashes amid transactions, it is expected that the system would follow some sort of algorithm or techniques to recover lost data.

Failure Classification

To see where the problem has occurred, we generalize a failure into various categories, as follows −

Transaction failure

A transaction has to abort when it fails to execute or when it reaches a point from where it can’t go any further. This is called transaction failure where only a few transactions or processes are hurt.

Reasons for a transaction failure could be −

· Logical errors − Where a transaction cannot complete because it has some code error or any internal error condition.

· System errors − Where the database system itself terminates an active transaction because the DBMS is not able to execute it, or it has to stop because of some system condition. For example, in case of deadlock or resource unavailability, the system aborts an active transaction.

System Crash

There are problems − external to the system − that may cause the system to stop abruptly and cause the system to crash. For example, interruptions in power supply may cause the failure of underlying hardware or software failure.

Examples may include operating system errors.

Disk Failure

In early days of technology evolution, it was a common problem where hard-disk drives or storage drives used to fail frequently.

Disk failures include formation of bad sectors, unreachability to the disk, disk head crash or any other failure, which destroys all or a part of disk storage.

Storage Structure

We have already described the storage system. In brief, the storage structure can be divided into two categories −

· Volatile storage − As the name suggests, a volatile storage cannot survive system crashes. Volatile storage devices are placed very close to the CPU; normally they are embedded onto the chipset itself. For example, main memory and cache memory are examples of volatile storage. They are fast but can store only a small amount of information.

· Non-volatile storage − These memories are made to survive system crashes. They are huge in data storage capacity, but slower in accessibility. Examples may include hard-disks, magnetic tapes, flash memory, and non-volatile (battery backed up) RAM.

Recovery and Atomicity

When a system crashes, it may have several transactions being executed and various files opened for them to modify the data items. Transactions are made of various operations, which are atomic in nature. But according to ACID properties of DBMS, atomicity of transactions as a whole must be maintained, that is, either all the operations are executed or none.

When a DBMS recovers from a crash, it should maintain the following −

· It should check the states of all the transactions, which were being executed.

· A transaction may be in the middle of some operation; the DBMS must ensure the atomicity of the transaction in this case.

· It should check whether the transaction can be completed now or it needs to be rolled back.

· No transactions would be allowed to leave the DBMS in an inconsistent state.

There are two types of techniques, which can help a DBMS in recovering as well as maintaining the atomicity of a transaction −

· Maintaining the logs of each transaction, and writing them onto some stable storage before actually modifying the database.

· Maintaining shadow paging, where the changes are done on a volatile memory, and later, the actual database is updated.

Log-based Recovery

Log is a sequence of records, which maintains the records of actions performed by a transaction. It is important that the logs are written prior to the actual modification and stored on a stable storage media, which is failsafe.

Log-based recovery works as follows −

· The log file is kept on a stable storage media.

· When a transaction enters the system and starts execution, it writes a log about it.

<Tn, Start>

· When the transaction modifies an item X, it write logs as follows −

<Tn, X, V1, V2>

It reads Tn has changed the value of X, from V1 to V2.

· When the transaction finishes, it logs −

<Tn, commit>

The database can be modified using two approaches −

· Deferred database modification − All logs are written on to the stable storage and the database is updated when a transaction commits.

· Immediate database modification − Each log follows an actual database modification. That is, the database is modified immediately after every operation.

Recovery with Concurrent Transactions

When more than one transaction are being executed in parallel, the logs are interleaved. At the time of recovery, it would become hard for the recovery system to backtrack all logs, and then start recovering. To ease this situation, most modern DBMS use the concept of 'checkpoints'.

Checkpoint

Keeping and maintaining logs in real time and in real environment may fill out all the memory space available in the system. As time passes, the log file may grow too big to be handled at all. Checkpoint is a mechanism where all the previous logs are removed from the system and stored permanently in a storage disk. Checkpoint declares a point before which the DBMS was in consistent state, and all the transactions were committed.

Recovery

When a system with concurrent transactions crashes and recovers, it behaves in the following manner −

[image: image14.png]
· The recovery system reads the logs backwards from the end to the last checkpoint.

· It maintains two lists, an undo-list and a redo-list.

· If the recovery system sees a log with <Tn, Start> and <Tn, Commit> or just <Tn, Commit>, it puts the transaction in the redo-list.

· If the recovery system sees a log with <Tn, Start> but no commit or abort log found, it puts the transaction in undo-list.

All the transactions in the undo-list are then undone and their logs are removed. All the transactions in the redo-list and their previous logs are removed and then redone before saving their logs.

Introduction to Object-Oriented Databases
· Why object-oriented databases?
· Why relational and object-relational databases are not enough?
· Current major activities concerning object-oriented databases.
· Basic concepts of object-oriented databases.
Why object-orientation in databases?

Object databases consist of objects rather than relations, tables or other data structures.

What is object?
“Object” is a kind of idiom or metaphor that addresses the human psychology and the way humans perceive the real world and think.
Millions years of the evolution have created in our minds mechanisms enabling us to isolate objects in our environment, to name them, and to assign to them some properties and behavior.
Object-oriented ness in computer technologies is founded on inborn mechanisms of our minds.
Why is object-orientation important?

· The software manufacturing problems:
· Growing cost of software design, development and deployment,

· The problem with “legacy” (obsolete) software,

· Big risk of unsuccessful projects,

· Immature methods of software design and construction,

· Poor reliability, problems with security

· Integration of distributed, heterogeneous, redundant and fragmented data and service resources,

· Very high cost of software maintenance.

· The main factor of the software problems: Complexity
· Object-orientation in new hope in fight with complexity.
Factors of the software complexity
[image: image21.emf]The world of analysis and design :

teams of people having limitations of

memory, perception, expressing

information and communication.

The world of analysis and design :

teams of people having limitations of

memory, perception, expressing

information and communication.

The world of the problem domain :

comprising complex, interdependent

knowledge, aspects and problems.

The world of the problem domain :

comprising complex, interdependent

knowledge, aspects and problems.

The world of computer

artifacts and technologies :

hardware, software, networks,

languages, tools, facilities.

The world of computer

artifacts and technologies :

hardware, software, networks,

languages, tools, facilities.

Software:

strategic decisions,

analysis, design,

construction,

documentation,

deployment,

education, use,

maintenance,

modifications.

The world of software users :

psychological factors, ergonomy,

limitations of memory and

perception, tendency to errors and

abuse, privacy, security, ...

The world of software users :

psychological factors, ergonomy,

limitations of memory and

perception, tendency to errors and

abuse, privacy, security, ...

Conceptual modeling of software

Processes of the software constructions are performed in our minds.

People must clearly imagine the problem before solving it.

Software analysis and design tools are nowadays object-oriented as a rule, c.f. UML.

Object-orientation reduces the complexity of the mappings:
- between the human perception of the problem domain and an abstract model
- between the abstract object-oriented model and databases → object databases
Why relational and object-relational databases are not enough?

· Relational databases are currently the most popular
· It is unlikely that they will loose soon their dominant position

· However, relational databases imply severe impedance mismatch between object-oriented design and relational data structures

· The mapping is difficult, software production cost is higher,

· Performance frequently compromised, maintenance cost too high.

· The relational model and the object model are fundamentally different, and the integrating the two is not straightforward
· Object-relational wave disappointed:
· Almost nobody uses object-oriented extensions of relational systems (see the famous interview with David Maier)

· They are not supported by standards, tools and API-s

New SQL standards aiming the object-relational model are unsuccessful.
Major activities concerning object-oriented databases
· Commercial OO DBMS (ca. 5% of the database market)
· Limited functionalities in comparison to RDBMS

· Objectivity/DB, Gem Stone, Object Store, Versant, On tos, db4o,…

· Object Data Management Group (ODMG) standard
· Low technical quality, inconsistent, incomplete, no full implementation

· However, showing the direction.

· New standards SQL-99 and SQL 2003
· Extremely huge and eclectic, too many redundant options, extremely difficult to implement,

· Loose recommendation rather than strong technical specification.

· OMG MDA / OCL / QVT /Action Semantics
· Actually, proposed as a support for UML specification, not databases

· Suggestions that can be used as query/programming languages are to be checked.

· Java and .NET persistence layers, Hibernate, LINQ, native queries
· XML repositories and query languages.
· New (pending) OMG standard on object-oriented databases.
General capabilities of object databases
Traditional capabilities (from relational systems):
· Secondary storage management

· Schema management

· Concurrency control

· Transaction management, recovery

· Query processing

· Access authorization and control, safety, security

New features
· Complex objects

· Object identities

· User-defined types

· Encapsulation

· Type/class hierarchy with inheritance

· Overloading, overriding, late binding, polymorphism

· Computational and pragmatic completeness of programmers’ interfaces
Object database concepts
Complex objects, object identity. Objects have arbitrary complexity. Each object has identity, i.e. a unique internal identifier (OID) (with no meaning in the problem domain), and Each object has one or more external names.

Relationships, associations , links. Objects are connected by conceptual links. For instance, the Employee and Department objects can be connected by a link works For.

Encapsulation and information hiding. The internal properties of an object are subdivided into two parts: public and private (invisible from the outside).

Classes, types, interfaces. Each object is an instance of one or more classes. Objects are instantiated according to information presented in the class. The class contains the properties that are common for some collection of objects (objects’ invariants). Each object has a type. Objects are accessible via their interfaces.

DBMS - Indexing

We know that data is stored in the form of records. Every record has a key field, which helps it to be recognized uniquely.

Indexing is a data structure technique to efficiently retrieve records from the database files based on some attributes on which the indexing has been done. Indexing in database systems is similar to what we see in books.

Indexing is defined based on its indexing attributes. Indexing can be of the following types −

· Primary Index − Primary index is defined on an ordered data file. The data file is ordered on a key field. The key field is generally the primary key of the relation.

· Secondary Index − Secondary index may be generated from a field which is a candidate key and has a unique value in every record, or a non-key with duplicate values.

· Clustering Index − Clustering index is defined on an ordered data file. The data file is ordered on a non-key field.

Ordered Indexing is of two types −

· Dense Index

· Sparse Index

Dense Index

In dense index, there is an index record for every search key value in the database. This makes searching faster but requires more space to store index records itself. Index records contain search key value and a pointer to the actual record on the disk.

[image: image15.png]
Sparse Index

In sparse index, index records are not created for every search key. An index record here contains a search key and an actual pointer to the data on the disk. To search a record, we first proceed by index record and reach at the actual location of the data. If the data we are looking for is not where we directly reach by following the index, then the system starts sequential search until the desired data is found.

[image: image16.png]
DBMS - Hashing

For a huge database structure, it can be almost next to impossible to search all the index values through all its level and then reach the destination data block to retrieve the desired data. Hashing is an effective technique to calculate the direct location of a data record on the disk without using index structure.

Hashing uses hash functions with search keys as parameters to generate the address of a data record.

Hash Organization

· Bucket − A hash file stores data in bucket format. Bucket is considered a unit of storage. A bucket typically stores one complete disk block, which in turn can store one or more records.

· Hash Function − A hash function, h, is a mapping function that maps all the set of search-keys K to the address where actual records are placed. It is a function from search keys to bucket addresses.

Static Hashing

In static hashing, when a search-key value is provided, the hash function always computes the same address. For example, if mod-4 hash function is used, then it shall generate only 5 values. The output address shall always be same for that function. The number of buckets provided remains unchanged at all times.

[image: image17.png]
Operation

· Insertion − When a record is required to be entered using static hash, the hash function h computes the bucket address for search key K, where the record will be stored.

Bucket address = h(K)

· Search − When a record needs to be retrieved, the same hash function can be used to retrieve the address of the bucket where the data is stored.

· Delete − This is simply a search followed by a deletion operation.

Bucket Overflow

The condition of bucket-overflow is known as collision. This is a fatal state for any static hash function. In this case, overflow chaining can be used.

· Overflow Chaining − When buckets are full, a new bucket is allocated for the same hash result and is linked after the previous one. This mechanism is called Closed Hashing.

[image: image18.png]
· Linear Probing − When a hash function generates an address at which data is already stored, the next free bucket is allocated to it. This mechanism is called Open Hashing.

[image: image19.png]
Dynamic Hashing

The problem with static hashing is that it does not expand or shrink dynamically as the size of the database grows or shrinks. Dynamic hashing provides a mechanism in which data buckets are added and removed dynamically and on-demand. Dynamic hashing is also known as extended hashing.

Hash function, in dynamic hashing, is made to produce a large number of values and only a few are used initially.

[image: image20.png]
Organization

The prefix of an entire hash value is taken as a hash index. Only a portion of the hash value is used for computing bucket addresses. Every hash index has a depth value to signify how many bits are used for computing a hash function. These bits can address 2n buckets. When all these bits are consumed − that is, when all the buckets are full − then the depth value is increased linearly and twice the buckets are allocated.

Operation

· Querying − Look at the depth value of the hash index and use those bits to compute the bucket address.

· Update − Perform a query as above and update the data.

· Deletion − Perform a query to locate the desired data and delete the same.

· Insertion − Compute the address of the bucket

· If the bucket is already full.

· Add more buckets.

· Add additional bits to the hash value.

· Re-compute the hash function.

· Else

· Add data to the bucket,

· If all the buckets are full, perform the remedies of static hashing.

Hashing is not favorable when the data is organized in some ordering and the queries require a range of data. When data is discrete and random, hash performs the best.

Hashing algorithms have high complexity than indexing. All hash operations are done in constant time.

� EMBED Word.Document.8 \s ���

[image: image22.emf]The world of analysis and design :

teams of people having limitations of

memory, perception, expressing

information and communication.

The world of analysis and design :

teams of people having limitations of

memory, perception, expressing

information and communication.

The world of the problem domain :

comprising complex, interdependent

knowledge, aspects and problems.

The world of the problem domain :

comprising complex, interdependent

knowledge, aspects and problems.

The world of computer

artifacts and technologies :

hardware, software, networks,

languages, tools, facilities.

The world of computer

artifacts and technologies :

hardware, software, networks,

languages, tools, facilities.

Software:

strategic decisions,

analysis, design,

construction,

documentation,

deployment,

education, use,

maintenance,

modifications.

The world of software users :

psychological factors, ergonomy,

limitations of memory and

perception, tendency to errors and

abuse, privacy, security, ...

The world of software users :

psychological factors, ergonomy,

limitations of memory and

perception, tendency to errors and

abuse, privacy, security, ...

_1491637106.doc
[image: image1.wmf]The world of analysis and design

:

teams of people

having limitations of

memory,

perception,

 expressing

information

and

communication.

The world of analysis and design

:

teams of people

having limitations of

memory,

perception,

 expressing

information

and

communication.

The world of the problem domain

:

comprising complex, interdependent

knowledge, aspects and problems.

The world of the problem domain

:

comprising complex, interdependent

knowledge, aspects and problems.

The world of computer

artifacts and technologies

:

hardware,

software,

networks,

languages,

tools, facilities.

The world of computer

artifacts and technologies

:

hardware,

software,

networks,

languages,

tools, facilities.

Software

:

strategic decisions,

analysis,

 design,

construction,

documentation,

deployment,

education,

use,

maintenance,

modifications.

The world of software users

:

psychological factors, ergonomy,

limitations of memory and

perception, tendency to errors and

abuse, privacy, security, ...

The world of software users

:

psychological factors, ergonomy,

limitations of memory and

perception, tendency to errors and

abuse, privacy, security, ...

