Relation Data Model

Relational data model is the primary data model, which is used widely around the world for data storage and processing. This model is simple and it has all the properties and capabilities required to process data with storage efficiency.

Concepts

Tables − In relational data model, relations are saved in the format of Tables. This format stores the relation among entities. A table has rows and columns, where rows represents records and columns represent the attributes.

Tuple − A single row of a table, which contains a single record for that relation is called a tuple.

Relation instance − A finite set of tuples in the relational database system represents relation instance. Relation instances do not have duplicate tuples.

Relation schema − A relation schema describes the relation name (table name), attributes, and their names.

Relation key − Each row has one or more attributes, known as relation key, which can identify the row in the relation (table) uniquely.

Attribute domain − Every attribute has some pre-defined value scope, known as attribute domain.

Constraints
Every relation has some conditions that must hold for it to be a valid relation. These conditions are called Relational Integrity Constraints. There are three main integrity constraints −

· Key constraints

· Domain constraints

· Referential integrity constraints

Key Constraints

There must be at least one minimal subset of attributes in the relation, which can identify a tuple uniquely. This minimal subset of attributes is called key for that relation. If there are more than one such minimal subsets, these are called candidate keys.

Key constraints force that −

· in a relation with a key attribute, no two tuples can have identical values for key attributes.

· a key attribute can not have NULL values.

Key constraints are also referred to as Entity Constraints.

Domain Constraints

Attributes have specific values in real-world scenario. For example, age can only be a positive integer. The same constraints have been tried to employ on the attributes of a relation. Every attribute is bound to have a specific range of values. For example, age cannot be less than zero and telephone numbers cannot contain a digit outside 0-9.

Referential integrity Constraints

Referential integrity constraints work on the concept of Foreign Keys. A foreign key is a key attribute of a relation that can be referred in other relation.

Referential integrity constraint states that if a relation refers to a key attribute of a different or same relation, then that key element must exist.

Relational Algebra

Relational database systems are expected to be equipped with a query language that can assist its users to query the database instances. There are two kinds of query languages − relational algebra and relational calculus.

Relational Algebra

Relational algebra is a procedural query language, which takes instances of relations as input and yields instances of relations as output. It uses operators to perform queries. An operator can be either unary or binary. They accept relations as their input and yield relations as their output. Relational algebra is performed recursively on a relation and intermediate results are also considered relations.

The fundamental operations of relational algebra are as follows −

· Select

· Project

· Union

· Set different

· Cartesian product

· Rename

We will discuss all these operations in the following sections.

Select Operation (σ)

It selects tuples that satisfy the given predicate from a relation.

Notation − σp(r)

Where σ stands for selection predicate and r stands for relation. p is prepositional logic formula which may use connectors like and, or, and not. These terms may use relational operators like − =, ≠, ≥, < , >, ≤.

For example −

σsubject = "database"(Books)
Output − Selects tuples from books where subject is 'database'.

σsubject = "database" and price = "450"(Books)
Output − Selects tuples from books where subject is 'database' and 'price' is 450.

σsubject = "database" and price = "450" or year > "2010"(Books)
Output − Selects tuples from books where subject is 'database' and 'price' is 450 or those books published after 2010.

Project Operation (∏)

It projects column(s) that satisfy a given predicate.

Notation − ∏A1, A2, An (r)

Where A1, A2 , An are attribute names of relation r.

Duplicate rows are automatically eliminated, as relation is a set.

For example −

∏subject, author (Books)
Selects and projects columns named as subject and author from the relation Books.

Union Operation (∪)

It performs binary union between two given relations and is defined as −

r ∪ s = { t | t ∈ r or t ∈ s}
Notion − r U s

Where r and s are either database relations or relation result set (temporary relation).

For a union operation to be valid, the following conditions must hold −

· r, and s must have the same number of attributes.

· Attribute domains must be compatible.

· Duplicate tuples are automatically eliminated.

∏ author (Books) ∪ ∏ author (Articles)
Output − Projects the names of the authors who have either written a book or an article or both.

Set Difference (−)

The result of set difference operation is tuples, which are present in one relation but are not in the second relation.

Notation − r − s
Finds all the tuples that are present in r but not in s.

∏ author (Books) − ∏ author (Articles)
Output − Provides the name of authors who have written books but not articles.

Cartesian Product (Χ)

Combines information of two different relations into one.

Notation − r Χ s

Where r and s are relations and their output will be defined as −

r Χ s = { q t | q ∈ r and t ∈ s}

∏ author = 'tutorialspoint'(Books Χ Articles)
Output − Yields a relation, which shows all the books and articles written by tutorialspoint.

Rename Operation (ρ)

The results of relational algebra are also relations but without any name. The rename operation allows us to rename the output relation. 'rename' operation is denoted with small Greek letter rho ρ.

Notation − ρ x (E)

Where the result of expression E is saved with name of x.

Additional operations are −

· Set intersection

· Assignment

· Natural join

Relational Calculus

In contrast to Relational Algebra, Relational Calculus is a non-procedural query language, that is, it tells what to do but never explains how to do it.

Relational calculus exists in two forms −

Tuple Relational Calculus (TRC)

Filtering variable ranges over tuples

Notation − {T | Condition}

Returns all tuples T that satisfies a condition.

For example −

{ T.name | Author(T) AND T.article = 'database' }

Output − Returns tuples with 'name' from Author who has written article on 'database'.

TRC can be quantified. We can use Existential (∃) and Universal Quantifiers (∀).

For example −

{ R| ∃T ∈ Authors(T.article='database' AND R.name=T.name)}

Output − The above query will yield the same result as the previous one.

Domain Relational Calculus (DRC)

In DRC, the filtering variable uses the domain of attributes instead of entire tuple values (as done in TRC, mentioned above).

Notation −

{ a1, a2, a3, ..., an | P (a1, a2, a3, ... ,an)}

Where a1, a2 are attributes and P stands for formulae built by inner attributes.

For example −

{< article, page, subject > | ∈ TutorialsPoint ∧ subject = 'database'}

Output − Yields Article, Page, and Subject from the relation TutorialsPoint, where subject is database.

Just like TRC, DRC can also be written using existential and universal quantifiers. DRC also involves relational operators.

The expression power of Tuple Relation Calculus and Domain Relation Calculus is equivalent to Relational Algebra.

ER Model to Relational Model

ER Model, when conceptualized into diagrams, gives a good overview of entity-relationship, which is easier to understand. ER diagrams can be mapped to relational schema, that is, it is possible to create relational schema using ER diagram. We cannot import all the ER constraints into relational model, but an approximate schema can be generated.

There are several processes and algorithms available to convert ER Diagrams into Relational Schema. Some of them are automated and some of them are manual. We may focus here on the mapping diagram contents to relational basics.

ER diagrams mainly comprise of −

· Entity and its attributes

· Relationship, which is association among entities.
Mapping Entity

An entity is a real-world object with some attributes.

[image: image1.png]
Mapping Process (Algorithm)

· Create table for each entity.

· Entity's attributes should become fields of tables with their respective data types.

· Declare primary key.

Mapping Relationship

A relationship is an association among entities.

[image: image2.png]
Mapping Process

· Create table for a relationship.

· Add the primary keys of all participating Entities as fields of table with their respective data types.

· If relationship has any attribute, add each attribute as field of table.

· Declare a primary key composing all the primary keys of participating entities.

· Declare all foreign key constraints.

Mapping Weak Entity Sets

A weak entity set is one which does not have any primary key associated with it.

[image: image3.png]
Mapping Process

· Create table for weak entity set.

· Add all its attributes to table as field.

· Add the primary key of identifying entity set.

· Declare all foreign key constraints.

Mapping Hierarchical Entities

ER specialization or generalization comes in the form of hierarchical entity sets.
[image: image4.png]
SQL Overview

SQL is a programming language for Relational Databases. It is designed over relational algebra and tuple relational calculus. SQL comes as a package with all major distributions of RDBMS.

SQL comprises both data definition and data manipulation languages. Using the data definition properties of SQL, one can design and modify database schema, whereas data manipulation properties allows SQL to store and retrieve data from database.

Data Definition Language

SQL uses the following set of commands to define database schema −

CREATE

Creates new databases, tables and views from RDBMS.

For example −

Create database tutorialspoint;

Create table article;

Create view for_students;

DROP

Drops commands, views, tables, and databases from RDBMS.

For example−

Drop object_type object_name;

Drop database tutorialspoint;

Drop table article;

Drop view for_students;

ALTER

Modifies database schema.

Alter object_type object_name parameters;

For example−

Alter table article add subject varchar;

This command adds an attribute in the relation article with the namesubject of string type.

Data Manipulation Language

SQL is equipped with data manipulation language (DML). DML modifies the database instance by inserting, updating and deleting its data. DML is responsible for all froms data modification in a database. SQL contains the following set of commands in its DML section −

· SELECT/FROM/WHERE

· INSERT INTO/VALUES

· UPDATE/SET/WHERE

· DELETE FROM/WHERE

These basic constructs allow database programmers and users to enter data and information into the database and retrieve efficiently using a number of filter options.

SELECT/FROM/WHERE

· SELECT − This is one of the fundamental query command of SQL. It is similar to the projection operation of relational algebra. It selects the attributes based on the condition described by WHERE clause.

· FROM − This clause takes a relation name as an argument from which attributes are to be selected/projected. In case more than one relation names are given, this clause corresponds to Cartesian product.

· WHERE − This clause defines predicate or conditions, which must match in order to qualify the attributes to be projected.

For example −

Select author_name

From book_author

Where age > 50;

This command will yield the names of authors from the relationbook_author whose age is greater than 50.

INSERT INTO/VALUES

This command is used for inserting values into the rows of a table (relation).

Syntax−

INSERT INTO table (column1 [, column2, column3 ...]) VALUES (value1 [, value2, value3 ...])

Or

INSERT INTO table VALUES (value1, [value2, ...])

For example −

INSERT INTO tutorialspoint (Author, Subject) VALUES ("anonymous", "computers");

UPDATE/SET/WHERE

This command is used for updating or modifying the values of columns in a table (relation).

Syntax −

UPDATE table_name SET column_name = value [, column_name = value ...] [WHERE condition]

For example −

UPDATE tutorialspoint SET Author="webmaster" WHERE Author="anonymous";

DELETE/FROM/WHERE

This command is used for removing one or more rows from a table (relation).

Syntax −

DELETE FROM table_name [WHERE condition];

For example −

DELETE FROM tutorialspoints

 WHERE Author="unknown";

SQL - Using Views
A view is nothing more than a SQL statement that is stored in the database with an associated name. A view is actually a composition of a table in the form of a predefined SQL query.

A view can contain all rows of a table or select rows from a table. A view can be created from one or many tables which depends on the written SQL query to create a view.

Views, which are kind of virtual tables, allow users to do the following:

· Structure data in a way that users or classes of users find natural or intuitive.

· Restrict access to the data such that a user can see and (sometimes) modify exactly what they need and no more.

· Summarize data from various tables which can be used to generate reports.

Creating Views:

Database views are created using the CREATE VIEW statement. Views can be created from a single table, multiple tables, or another view.

To create a view, a user must have the appropriate system privilege according to the specific implementation.

The basic CREATE VIEW syntax is as follows:

CREATE VIEW view_name AS

SELECT column1, column2.....
FROM table_name

WHERE [condition];
You can include multiple tables in your SELECT statement in very similar way as you use them in normal SQL SELECT query.

Example:

Consider the CUSTOMERS table having the following records:

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+-----------+----------+
Now, following is the example to create a view from CUSTOMERS table. This view would be used to have customer name and age from CUSTOMERS table:

SQL > CREATE VIEW CUSTOMERS_VIEW AS

SELECT name, age

FROM CUSTOMERS;
Now, you can query CUSTOMERS_VIEW in similar way as you query an actual table. Following is the example:

SQL > SELECT * FROM CUSTOMERS_VIEW;
This would produce the following result:

+----------+-----+
| name | age |
+----------+-----+
Ramesh	32
Khilan	25
kaushik	23
Chaitali	25
Hardik	27
Komal	22
Muffy	24
Updating a View:

A view can be updated under certain conditions:

· The SELECT clause may not contain the keyword DISTINCT.

· The SELECT clause may not contain summary functions.

· The SELECT clause may not contain set functions.

· The SELECT clause may not contain set operators.

· The SELECT clause may not contain an ORDER BY clause.

· The FROM clause may not contain multiple tables.

· The WHERE clause may not contain subqueries.

· The query may not contain GROUP BY or HAVING.

· Calculated columns may not be updated.

· All NOT NULL columns from the base table must be included in the view in order for the INSERT query to function.

So if a view satisfies all the above-mentioned rules then you can update a view. Following is an example to update the age of Ramesh:

SQL > UPDATE CUSTOMERS_VIEW

 SET AGE = 35
 WHERE name='Ramesh';
This would ultimately update the base table CUSTOMERS and same would reflect in the view itself. Now, try to query base table, and SELECT statement would produce the following result:

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	35	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+-----------+----------+
Inserting Rows into a View:

Rows of data can be inserted into a view. The same rules that apply to the UPDATE command also apply to the INSERT command.

Here we can not insert rows in CUSTOMERS_VIEW because we have not included all the NOT NULL columns in this view, otherwise you can insert rows in a view in similar way as you insert them in a table.

Deleting Rows into a View:

Rows of data can be deleted from a view. The same rules that apply to the UPDATE and INSERT commands apply to the DELETE command.

Following is an example to delete a record having AGE= 22.

SQL > DELETE FROM CUSTOMERS_VIEW

 WHERE age = 22;
This would ultimately delete a row from the base table CUSTOMERS and same would reflect in the view itself. Now, try to query base table, and SELECT statement would produce the following result:

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	35	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+-----------+----------+
Dropping Views:

Obviously, where you have a view, you need a way to drop the view if it is no longer needed. The syntax is very simple as given below:

DROP VIEW view_name;
Following is an example to drop CUSTOMERS_VIEW from CUSTOMERS table:

DROP VIEW CUSTOMERS_VIEW;
SQL – Indexes
Indexes are special lookup tables that the database search engine can use to speed up data retrieval. Simply put, an index is a pointer to data in a table. An index in a database is very similar to an index in the back of a book.

For example, if you want to reference all pages in a book that discuss a certain topic, you first refer to the index, which lists all topics alphabetically and are then referred to one or more specific page numbers.

An index helps speed up SELECT queries and WHERE clauses, but it slows down data input, with UPDATE and INSERT statements. Indexes can be created or dropped with no effect on the data.

Creating an index involves the CREATE INDEX statement, which allows you to name the index, to specify the table and which column or columns to index, and to indicate whether the index is in ascending or descending order.

Indexes can also be unique, similar to the UNIQUE constraint, in that the index prevents duplicate entries in the column or combination of columns on which there's an index.

The CREATE INDEX Command:

The basic syntax of CREATE INDEX is as follows:

CREATE INDEX index_name ON table_name;
Single-Column Indexes:

A single-column index is one that is created based on only one table column. The basic syntax is as follows:

CREATE INDEX index_name

ON table_name (column_name);
Unique Indexes:

Unique indexes are used not only for performance, but also for data integrity. A unique index does not allow any duplicate values to be inserted into the table. The basic syntax is as follows:

CREATE UNIQUE INDEX index_name

on table_name (column_name);
Composite Indexes:

A composite index is an index on two or more columns of a table. The basic syntax is as follows:

CREATE INDEX index_name

on table_name (column1, column2);
Whether to create a single-column index or a composite index, take into consideration the column(s) that you may use very frequently in a query's WHERE clause as filter conditions.

Should there be only one column used, a single-column index should be the choice. Should there be two or more columns that are frequently used in the WHERE clause as filters, the composite index would be the best choice.

Implicit Indexes:

Implicit indexes are indexes that are automatically created by the database server when an object is created. Indexes are automatically created for primary key constraints and unique constraints.

The DROP INDEX Command:

An index can be dropped using SQL DROP command. Care should be taken when dropping an index because performance may be slowed or improved.

The basic syntax is as follows:

DROP INDEX index_name;
You can check INDEX Constraint chapter to see actual examples on Indexes.

When should indexes be avoided?

Although indexes are intended to enhance a database's performance, there are times when they should be avoided. The following guidelines indicate when the use of an index should be reconsidered:

· Indexes should not be used on small tables.

· Tables that have frequent, large batch update or insert operations.

· Indexes should not be used on columns that contain a high number of NULL values.

· Columns that are frequently manipulated should not be indexed.

