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Module 3: Data Preprocessing

3.1 Overview

This module introduces you:

a. Need for data preprocessing

b. Various techniques of data preprocessing.
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3.2 Introduction to data preprocessing

Today's real-world databases are highly susceptible to
noisy and inconsistent data.

3.2.1 Why preprocess the data?

1. Data needs to be preprocessed in order to improve
the quality of the data and consequently of the
mining results.

2. Data cleaning routines work to "clean" the data by
filling in missing values, smoothing noisy data,
identifying or removing outliers and resolving
inconsistencies.

3. Dirty data can cause confusion for the mining
procedure, resulting in unreliable output.
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3.2.2 Data preprocessing techniques

Data pre processing for OLAP and data mining
consists of five techniques. They are:

a. Data cleaning
b. Data integration
c. Data transformation
d. Data reduction
e. Data discretisation
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3.3 Data cleaning

In a data cleaning exercise we perform four
activities. They are:

a. Fill in missing values
b. Smooth out noise
c. Identify outliers
d. Correct inconsistencies

Data cleaning activities
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3.3.1 Various missing value fill
methods

Six methods for filling missing values are:

a. Ignore the tuple

b. Fill in missing value manually

c. Use a global constant (replace all missing with
same constant)

d. Use the attribute mean

e. Use attribute mean over all samples of same
class as given tuple

f. Use most probable value.
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3.3.2 Noisy data smoothing

Data needs to be smoothed to remove noise. There are
four data smoothing techniques. They are:

a. Binning
b. Clustering
c. Combined human & computer inspection
d. Regression
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3.4 Data integration & data 
transformation 

Data mining often requires data integration, the merging 
of data from multiple data stores.  

3.4.1 Data integration techniques

There are three data integration techniques. They are :

a. Schema integration (synonym identification, homonym 
identification) 

b. Redundancy (finding derivable attributes, double ups) 
c. Detection and resolution of data value conflicts

Data integration techniques
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3.4.2 Data transformation

There are five data transformation techniques. They are:

a. Smoothing

b. Aggregation

c. Generalization

d. Normalization

e. Attribute Construction.
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3.5 Data reduction

Data reduction techniques can be applied to obtain a
reduced representation of the data set that is much
smaller in volume, yet closely maintains the integrity
of the original data.

There are five strategies for data reduction. They
are:

a. Data cube aggregation

b. Dimension reduction

c. Data compression

d. Numerosity reduction

e. Discretisation
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3.5.1 Data cube aggregation

• Data cubes store multidimensional aggregated
information.

• Data cubes provide fast access to pre computed
summarized data, thereby benefiting on-line analytical
processing as well as data mining.

• The cube created at the lowest level of abstraction is
referred to as the base cuboid.

• A cube for the highest level of abstraction is the apex
cuboid.

• Data cubes created for varying levels of abstraction are
referred to as cuboids, so that a data cube may instead
refer to a lattice of cuboids.

• Each higher level of abstraction further reduces the
resulting data size.
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3.5.2 Dimensionality reduction

Dimensionality reduction reduces the data set size by
removing irrelevant attributes (or dimensions) from it.

Mining on a reduced set of attributes has an additional
benefit.

It reduces the number of attributes appearing in the
discovered patterns helping to make the patterns
easier to understand.
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3.5.2 Dimensionality reduction

Basic methods of attribute subset selection include
three techniques:

a. Stepwise forward selection

b. Stepwise backward elimination

c. Combination of forward selection and backward

elimination.
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3.5.3 Data compression

In data compression, data encoding or
transformations are applied so as to obtain a
reduced or "compressed" representation of the
original data.

If the original data can be reconstructed from the
compressed data without any loss of information,
the data compression technique used is called loss
less.

If we reconstruct only an approximation of the
original data, then the data compression technique
is called lossy.
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3.5.3 Data compression

The two methods of data compression are:

a. Wavelet transforms

b. Principal components analysis.

Wavelet transforms
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3.5.4 Numerosity reduction

Numerosity reduction techniques are applied to
reduce the data volume by choosing alternative,
'smaller' forms of data representation.

The four numerosity reduction techniques are:

a. Regression and Log-Linear Models
b. Histograms
c. Clustering
d. Sampling
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3.6 Discretisation & concept hierarchy       
generation

Discretisation techniques can be used to reduce the
number of values for a given continuous attribute, by
dividing the range of the attribute into intervals.

Concept hierarchy for a given numeric attribute
defines a discretisation of the attribute.

Concept hierarchies can be used to reduce the data by
collecting and replacing low-level concepts by higher-
level concepts .
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3.6.1 Discretisation and concept
hierarchy generation for
numeric data

The five methods for numeric concept hierarchy
generation:

a. Binning
b. Histogram analysis
c. Cluster analysis
d. Entropy-based discretisation
e. Data segmentation by "natural partitioning.
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3.6.2 Concept hierarchy generation for
categorical data

The three methods for the generation of concept

hierarchies for categorical data as mentioned below:

a. Specification of a partial ordering of attributes
explicitly at the schema level by user experts.

b. Specification of a portion of a hierarchy by explicit
data grouping.

c. Specification of a set of attributes, but not their
partial order.

DR. NIDHI KHURANA



20 of 20 

Module 3: Data Preprocessing

3.7 Summary

Data preprocessing is an important issue for both
data warehousing and data mining, as real-world
data tend to be incomplete, noisy and inconsistent.

Data cleaning routines can be used to fill in
missing values, smooth noisy data, identify outliers
and correct data inconsistencies.

Data integration combines data from multiple
sources to form a coherent data store.

Data transformation routines convert the data
into appropriate forms for mining.

Data reduction techniques such as data cube
aggregation, dimension reduction, data
compression, numerosity reduction and
discretisation can be used to obtain a reduced
representation of the data.

Automatic generation of concept hierarchies for
numeric data can involve techniques such as
binning, histogram analysis, cluster analysis,
entropy-based discretisation and segmentation by
natural partitioning.
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